Reg. No. : \square

Question Paper Code : 63255

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Second Semester

Civil Engineering
MA 1151 - MATHEMATICS - II
(Common to all branches)
(Regulations 2008)
Time : Three hours
Answer ALL questions.
PART A - $(10 \times 2=20$ marks $)$

1. Find the Laplace transform of $\frac{\sin a t}{t}$.
2. Find the inverse Laplace transform of $\frac{s+1}{s^{2}-2 s}$.
3. The temperature at a point (x, y, z) in a space is given by $T(x, y, z)=x^{2}+y^{2}-z$. A mosquito located at $(1,1,2)$ desires to fly in such a direction that it will get warm as soon as possible. In what direction should it fly?
4. A vector field $\vec{F}=\left(x^{2}-y^{2}+x\right) \hat{i}-(2 x y+y) \hat{j}$. Find $\operatorname{div} \vec{F}$ and $\operatorname{Curl} \vec{F}$.
5. Prove that $w=z^{2}$ is analytic.
6. Find the fixed points of the transformation $w=\frac{6 z-9}{z}$.
7. Evaluate : $\int_{0}^{2} \int_{0}^{x}(x+y) d x d y$.
8. Evaluate $\iint e^{-x-y} d x d y$ over R, where R is the region in the first quadrant in which $x+y \leq 1$.
9. Identify and classify the singularity of $f(z)=\frac{\sin z}{z}$.
10. Find the residue of $f(z)=\frac{z+1}{(z-1)(z-2)}$ at $z=2$.

$$
\text { PART B }-(5 \times 16=80 \text { marks })^{\prime}
$$

11. (a) (i) Find the Laplace transform of $\frac{1-e^{l}}{t}$.
(ii) Find the Laplace transform of $f(t)=\left\{\begin{array}{ll}t, & 0<t<a \\ 2 a-t, & \dot{a}<t<2 a\end{array}\right.$ with $f(t+2 a)=f(t)$.

Or.

(b) (i) Using convolution theorem find $L^{-1}\left\{\frac{1}{s^{2}\left(s^{2}+1\right)}\right\}$.
(ii) Solve $y^{\prime \prime}+7 y^{\prime}+10 y=4 e^{-3 t}, \quad y(0)=0, \quad y^{\prime}(0)=-1$ using , Laplace transform.
12. (a) (i) Prove that $\vec{F}=\left(y^{2} \cos x+z^{3}\right) \vec{i}+(2 y \sin x-4) \vec{j}+\left(3 x z^{2}+2\right) \vec{k}$ is irrotational and find its scalar potential.
(ii) Verify Stoke's theorem for $\vec{F}=x^{2} \vec{i}+x y \vec{j}$ in the square region in the $x y$-plane bounded by the lines $x=0, y=0, x=a, y=a$.

Or
(b) (i) Prove that $\nabla^{2}\left(r^{n} \vec{r}\right)=n(n+3) r^{n-2}$.
(ii) Verify Gauss divergence theorem for $\vec{F}=\left(x^{2}-y z\right) \vec{i}+\left(y^{2}-z x\right) \vec{j}+\left(z^{2}-x y\right) \vec{k}$ taken over the rectangular parallelopiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.
13. (a) (i) Let $f(z)=u+i v$ be an analytic function. If $u-v=e^{x}(\cos y-\sin y)$, then find f.
(ii) If $f(z)$ is an analytic function of z, then prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$

$$
\begin{equation*}
|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2} \tag{8}
\end{equation*}
$$

Or
(b) (i) Determine the region of w-plane into which the triangle formed by $x=1, y=1, x+y=1$ is mapped under the transformation $w=z^{2}$.
(ii) Find the bilinear transformation which maps the points $z=1, i,-1$ onto the points $w=i, 0,-i$. Hence find the image of $|z|<1$.
14. (a) (i) Evaluate through change of variábles the double integral $\iint_{R}(x+y)^{3} e^{x-y} d A$; where R is the square with vertices $(1,0),(2,1)$, $(1,2)$ and $(0,1)$ using the transformation $u=x+y$ and $v=x-y$. (8)
(ii) Find, by triple integral, the volume of the tetrahedron bounded by coordinate planes and the plane $x+y+z=1$.

Or
(b) (i) Find; by double integration, the area lying inside the circle $r=a \sin \theta$ and outside the cardiod $r=\alpha\left(1^{\prime}-\cos \theta\right)$.
(ii) Find the volume bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $y+z=4$ and $z=0$.
15. (a) (i) Using Cauchy's integral formula, evaluate $\int_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-2)(z-3)} d z$, where C is the circle $|z|=4$.
(ii) Evaluate, using contour integration, $\int_{0}^{2 \pi} \frac{d \theta}{1-2 p \cos \theta+\dot{p}^{2}}, 0<p<1$.

> Or
(b) (i) Find the Laurent's series of $f(z)=\frac{1}{z(1-z)}$ valid in the regions $1<|z+1|<2$ and $|z+1|>2$.
(ii) Evaluate $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$, using contour integration where $a>b>0$.

